

Equipment

- AGI SuperSting R8 Earth Resistivity Meter
- GSSI SIR-3000 Ground Penetrating Radar with 400 MHz antenna
- Topcon HiperGA Real Time Kinematic Global Positioning System (base and rover)
- Hammers, measuring tapes, salt water

Resistivity Tomography Survey - Applications

- Depth to Bedrock
- Warst feature mapping (sinkholes, pinnacles/cutters, fractures)
- Void mapping
- Landfill Thickness Mapping
- Geologic Mapping

Caveat: Works very poorly in urban areas

Electrode Configurations

Wenner, Schlumberger, Pole-pole, Dipole-Dipole, etc.

Ground surface

data point

$$\rho_a = \pi n (n + 1) (n + 2) a (V/I)$$

where ρ_a is apparent resistivity (Ω m), n is n-spacing (m), a is a-spacing (m), V is potential (volts), and I is current (amperes).

Ohm-m

Ohm-m

Ground Penetrating Radar – Physics

Part of "background" line Random 40 m between road and bare spot

Lines over bare spot

Perpendicular to Resistivity Line 1

Conclusion

- Resistivity Line 1 suggests the presence of shallow mine up to
 10 m deep correlating with the bare spot
- Similar anomalies do not appear on Lines 2-4
- GPR also shows strong reflectors correlating with bare spot
- GPR survey is proof of concept a more rigorous survey could be conducted
- Electromagnetic survey could rapidly cover a wide area, especially with 5 or 10 geophysics students taking turns as operator (~400 m x 400 m square/day?)

